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In  this paper the general analysis, developed in part 1, of three-dimensional duct 
flows subject to a strong transverse magnetic field is used to examine the flow in 
diverging ducts of rectangular cross-section. It is found that, with the magnetic 
field parallel to one pair of the sides, the essential problem is the analysis of the 
boundary layers on these (side) walls. Assuming that they are highly conducting 
and that those perpendicular to the magnetic field are non-conducting, the flow is 
found to have some interesting properties: if the top and bottom walls diverge, 
the side walls remaining parallel, then an O(1) velocity overshoot occurs in the 
side-wall boundary layers; but if the top and bottom walls remain parallel, the 
side walls diverging, these boundary layers have conventional velocity profiles. 
The most interesting flows occur when both pairs of walls diverge, when it is 
found that large, O(M*), velocities occur in the side-wall boundary layers, either 
in the direction of the mean flow or in the reverse direction, depending on the 
geometry of the duct and the external electric circuit ! 

The mathematical analysis involves the solution of a formidable integral 
equation which, however, does have analytic solutions for some special types of 
duct. 

1. Introduction 
In part 1, Hunt & Ludford (1968) embarked upon a general analysis of three- 

dimensional duct flows subject to a transverse magnetic field sufficiently strong 
for inertial effects to be negligible. The flow can then be divided into an inviscid 
core region, Hartmann boundary layers on walls intersecting the magnetic field, 
and narrow viscous regions parallel to the magnetic field. These can either be 
boundary layers on the walls or free shear layers within the fluid emanating from 
obstacles in the flow or discontinuities at the duct walls. Apart from setting up 
the machinery for treating such flows in general, in which it was found that the 
core flow is largely determined by a new three-dimensional jump condition 
across the Hartmann layers, the emphasis of part 1 was on analysing flows over 
obstacles in channels of constant area. P o  direct mention of the side walls was 
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made because they only modify the flow near the obstacle in an inessential way, 
at  least for insulating or conducting walls on open circuit, cf. $8.1 

After publication of part 1 it was discovered that Kulikovskii (1968) had 
already derived some of this general analysis. However, the emphasis of his work 
is less physical and he does not treat the problem mentioned above. Also, since 
publication of part 1, the theory has been confirmed, with unjustifiable accuracy, 
from experiments measuring the drag on a sphere placed in a transverse magnetic 
field. Further discussion is given in $ 2  and by Hunt (1970). 

Part 1 ended with a promise to apply the general theory to ducts of varying 
cross-section (hereafter called diverging), and the present paper is a first step in 
this direction. We shall concentrate on the most practical class, namely symmetric 
rectangular ducts whose side walls (parallel to the applied magnetic field) are 
perfect conductors, the other two walls being insulators (see figure 1) .  [Clearly 
other combinations of wall conductivity will produce as varied flows as they do in 
constant-area rectangular ducts.] The essential problem is to determine the 
boundary layers on the side walls. Fortunately the completely local character of 
these side layers makes their analysis tractable. 

The first type of duct considered ( $ 2 )  has parallel side walls, this being the 
situation envisaged by Hunt & Leibovich (1967) in their two-dimensional 
treatment of diverging channels. They assumed that satisfactory side layers 
could be constructed for their core flow, and one of our objectives is to prove this. 
A first glance suggests a straightforward modification of the structure of the side 
layers in constant-area ducts found by Hunt & Stewartson (1965) and Chiang & 
Lundgren (1967). But the analysis shows otherwise. The governing integral 
equation ( $  3), which must in general be solved numerically (§ 4), normally leads 
to a velocity profile containing an overshoot which ensures zero flux deficiency 
in the layer. Correspondingly, there is no first-order disturbance of the core flow. 
It is shown in $ 5 that the constant-area results are basically correct only when the 
divergence of the duct is small (at most comparable to the inverse square root of 
the Hartmann number). As the divergence tends to zero the velocity over- 
shoot moves out into the core as a first-order perturbation, leaving behind a 
flux deficiency in the layer. Also in $ 5 an exact solution of the integral equation is 
obtained for a particular divergence. 

In $6 we examine the more interesting type of duct whose side walls also 
diverge. That the flow is radically different can be seen from the general result 
found in part 1, $3, concerning current lines in the core. For rectangular ducts 
these lines lie in the cross-sections and are parallel to the non-conducting walls 
(so long as the latter are diverging). When the side walls are perpendicular to 
these current lines, as in $ 2, there is no violation of the boundary condition at a 
perfect conductor, namely zero tangential current. The side layers need only 
accomodate the jump in tangential velocity. But when the side walls diverge there 
is also a tangential current to be reduced to zero, which entails a jump in electric 
potential across the layer. Such a jump? induces large velocities, in this case of the 
order of the square root of the Hartmann number. Thus the side layers are able 

t This effect appeared in the free shear layer of part 1 and flows treated by Moffatt 
(1964) and Hunt (1965). 
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to carry a substantial part of the total flnx through the duct. In some cases there 
is even an excess flux through the core and a reverse flux through these layers; 
for instance, when both pairs of walls are diverging and the side walls are shorted. 
The analysis of $6 follows that in $52-5, with another integral equation t o  be 
solved by similar methods. 

The exceptional case where the top and bottom walls are parallel is considered 
in $ 7. In  this typeof duct the current lines are no longer confined t o  cross-sections, 
being determined by a solution of Laplace’s equation, as shown in part 1. The 
current lines in the core can once again approach the side walls normally so that 
no potential jump is required across the side layers. In  fact, these layers are 
locally of the kind found in constant-area ducts. 

A discussion of the three types of ducts is given in $8,  and in particular their 
roles as parts of a general symmetric duct. A duct with both pairs of walls di- 
verging exponentially is used to illustrate the division of flux between the core and 
side layers in the second type ($6) .  Finally a simple example shows how our 
analysis can be easily adapted to non-symmetric ducts. 

A fuller treatment is given in Walker’s (1970) thesis. 

2. Formulation of the problem for parallel side walls 
When the magnetic Reynolds number R, = ,uU,crd is small, the equations 

governing the steady flow of an electrically conducting liquid of uniform pro- 
perties under the action of a transverse magnetic field, B,, are, in non-dimensional 
form, 

( v . 0 ) ~  = - V p + N ( j  xQ)+R-Iv2v, ( l a )  

j = V # + v x 9 ,  (1b) 

O . j  = 0, 0 . v  = 0, ( l c ,  4 
as used in part 1. (For their derivation see Hunt & Leibovich (1967).) Here 

N = gB$d/pU, and R = pU,d/q 

are the interaction and Reynolds numbers, respectively, while 9 is the unit 
vector in the direction of B,. 

The present duct (shown in figure 1) has parallel plane side walls so that half 
their distance apart will be taken for the characteristic length d. The average 
velocity at  some section, say x = 0 with the x axis along the centreline of the 
duct, will be used for the characteristic velocity U,. Thus 

As boundary conditions we have 

v = 0, j ,  = +f’(x)j, at the insulating walls y = + f ( ~ ) ,  ( 3 4  
and 

v = 0, j, = j, = 0 at the perfectly conducting walls x = 1. (3b) 

Together with the governing equations (1) these form a homogeneous problem 
whose solution is normalized by the condition (2). Since the pressure p and the 
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electric potential Q do not appear in any of the conditions (2), (3), it is convenient 
to eliminate them from the system ( 1 )  t o  obtain 

(4a) 

V x j  = av/ay, 0 . j  = 0, V . V  = 0 (4b, c, 4 
N-lV x [(v. V)v] = ajjay + M-2V2(V x v), 

for the velocity v and current j alone. Having determined the latter p and Q 
follow from equations (1  a, b) .  Here 

is the Hartmann number. 
M = N*R& = B,d(g/T)$ 

FIGURE 1. Duct with parallel side walls. 

The only assumption so far is 
Rm< 1;  

N , M p  1. 
now we take in addition 

These three conditions can be satisfied in various ways, and do not necessarily 
imply that the Reynolds number R is large. For example, a small CT but large 
rrB: leaves R arbitrary; on the other hand, small U, and large B, will give R < 1. 
We stress this because part 1 gives the impression that the analysis is o d y  valid if 
R $ 1. However the intention was to indicate that inertial terms can be ignored 
even if R $- 1, provided M is large enough, such being the necessary experimental 
Conditions if accurate measurements of velocity are to be made. I n  fact, in the 
experiments of Kalis, Slyusarev, Tsinober & Shtern (19614, on the drag of bluff 
bodies placed in a duct flow, R was not particularly large (about 20). I n  these Riga 
experiments N was about 2500 so that the condition AT p R3 for the part 1 theory 
to  be valid was not grossly violated. Nevertheless, this does not explain why a 
theory considered unrealistic by Hunt st Ludford themselves is in such good 
agreement (Hunt 1970) with experimental results. But this agreement does sug- 
gest that similar experiments should also compare well with the theory of part 2. 
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Under the conditions ( 5 ) ,  the flow region may be divided into separate parts, 
certain terms being neglected in each subregion. A central core is surrounded by 
thin layers in the fluid adjacent to the duct walls. If the divergence of the duct is 
smooth, all derivatives in the core are O( 1). The flux condition (2) indicates an 
O(1) core velocity, and Ohm's law ( l b )  indicates an O(1) current. Then the 
O(N-l) inertia terms and the O(M--2) viscous terms may be neglected, so that the 
momentum equation reduces to a balance between the Lorentz force and the 
O(N) pressure gradient. The core solution does not, however, satisfy the con- 
ditions at the walls. 

The solutions in the boundary layers must satisfy the wall conditions and 
match the core solution. Since they arevery different for different duct geometries, 
we cannot assess the order of magnitude of the inertial terms at  this stage. We 
shall assume N is large enough for the flow to be entirely inertialess, so that the 
layers required to satisfy u = v = 0 on the walls are the result of a viscous- 
electromagnetic balance. The assessment will be given in $8. 

In  part 2 we shall not be analysing the free shear layers within the fluid, where 
inertial effects can always be important. For example, such layers stem from 
sharp divergences in the duct walls (Hunt & Leibovich 1967) and from the edges 
of obstacles placed in the duct (part 1). 

Without the inertia term, equation (4a)  becomes 

o = aj/ay + M-~V(V x v), ( 4 a  

and equation (1 a) becomes 

Vh = j x 9 -I- M - V v ,  where F, = N-lp, 

so that the Hartmann number is the only parameter left in the problem. The 
various subregions are shown in figure 2 (cf. Hunt & Stewartson 1965). (a)  Core. 
All dimensions and derivatives are O(1). (b) Hartmann boundary layers adjacent 
to the core of thickness O(M-l), so that alan = O ( M )  while alas = O(1) = a/at. 
( c )  Side-wall boundary layers of thickness O(M-*), so that a/& = O(M4) while 
ajax = O(1) = a/ay. The different structure of these layers from that of a 

FIGURE 2. x and z sections showing subregions and notation. 
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Hartmann layer is due to the absence of a normal component of magnetic field. 
(d )  Hartmann boundary layers adjacent to the side-wall layers of thickness 
O(M-l) and breadth O(M-3) in the z (or t )  direction, so that a/an = O ( M ) ,  
a/at = O(M:), and alas = O(1). These layers are still vanishingly thin on the 
scale of the side-wall layers. ( e )  Singular corner regions of dimensions O(M-l) in 
an s = constant section, so that a/an = O ( M )  = a/at while alas = O(1). A side- 
wall layer will see a corner region as a point where values needed to match 
the adjacent Hartmann layer may not agree with those on the side-wall surface. 

Expansions in Mmay be used to determine the flow in eachregion. First, the co- 
ordinates within a region are rescaled so that all derivatives are o( 1). The variables 
v, h, j and 4 are tentatively expanded as power series in M-4, such a.s 

J .  8. Walker, G.  S. S. Ludford and J .  G .  R. Hunt 

?,/) = u(” + u(4)M-i + 0 (M-I), (6) 

where the coefficients u ( ~ )  are functions of the (possibly scaled) co-ordinates 
alone. Powers of M-3 are used because this is the largest parameter appearing in 
the equations and subregion dimensions. 

Consider the solution in the core and adjacent Hartmann layers. The core 
variables, denoted by capital letters, satisfy 

a J y a Y  = 0, avyay = v x J(S, 

where 
( 7 )  

The variables in the Hartmann layers are determined locally from the tangential 
velocity and current outside, and match the core variables provided the latter 
satisfy certain boundary conditions, which physically express continuity of 
velocity and current within the layer. Part 1 gives these conditions for a general 
insulator: 

v, = M-llfi.QI-l(aV,/as+av,/at), 

where (n,s, t)  is a local right-handed co-ordinate system (see figure 2 ) .  In our 
case, these conditions become 

f ’UCi) F p = 0, f ’ J p  T J‘i) II = 0 at y = +J(x). (9% b )  

Provided the duct is actually diverging, i.e. f ’ ( ~ )  + 0, the general solution to 
(7) and (9) is 

r-70 = f ( ~ ) - l ~ z ~ ( i ) / ~ X z ,  ~ ( i )  = ydz~(~)/dz~, wci) = acpi)/az, 

J F )  = J F )  = 0, J P )  = -dh(i)/dx, (10) 

W )  = p- z(f’)-1 d(fdh‘i’/dx)/dx, (10‘) 

with the electric potential given by 

where W(X) and $-(i)(x) are integration functions representing the pressure and 
centreline potential. Note that these formulas can be taken to the limit f’+ 0 
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since the d2h(i)/dx* vanish like f I ,  as we shall see later. They then give the constant- 
area duct solution. 

In  the side-wall layers, the z co-ordinate must be stretched locally. Near 
z = 1, the substitution c = M*(zT 1)  gives a semi-infinite region with a side 
wall at  5 = 0. The equations (4d, b,  c, d )  to be solved are 

and 
ajLo)/ay = aj$')/ay = aj(O)/aC = aw(O)/aC = 0, ( 1 l a )  

( 1 l b )  I aj$,/ay = a3v(o)/ac3, aj$/ag = a j p p x  + av'o)/ay, 
a jp /ay  = - a3u(O)/ag3, ajp,/ac = ajp/ay - aZL(o)/ay, 
aj$/ac = - ajp/ax - ajpjay,  aw(:)/af; = - au(o)/ax - aw(o)/ay. 

The remaining pair of equations relate variables which are completely defined 
by these six equations and their boundary conditions. This redundancy was 
introduced by eliminating p and q5 from (1) without appropriately reducing the 
number of equations. 

The conditions (3b) for a perfectly conducting wall become 

$d) = 0 and jg) =jf) = 0 at C = 0. 

The Hartmann conditions (8) apply also in the side layers, where they yield 

A singular corner region permits a discontinuity between the variables evaluated 
on adjacent walls. 

Matching the solutions in the core the side layers will provide additional 
boundary Conditions. The formal matching procedure is very simple: it reduces 
to equating the limit of a core variable as x+  2 1 to that of the corresponding 
side-layer variable as c+ T 00. In other words, the ways in which these limits are 
approached do not enter the matching as far as we take it. 

The first obvious results are 

d o )  = jL0) = ' ( 0 )  = 0 and j($ = - &,(i)/dx, 3U 

so that, in particular, the core solution satisfies W0) = 0 a t  z = 5 1. Thus 

h(O) = C , ~ - C 2 ~ x f - 1 d x ,  $-Co) = 0, 
0 

where inessential additive constants have been omitted. The integration con- 
stants C, and C, are related to the pressure drop Nh, along the duct and the 
potentials 'F: q50 of the side walls x = 5 1 : 

ho = -ClZ+C21 f-ldx, q50 = C,. 

They are determined by the flux condition (2) and the external electrical circuit. 
If the side walls are connected by a resistance &?/ad, the constants become 

1 

0 

and C,=  f(0). (13') 
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It follows that the O( 1) core solution is simply 
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(14) I UtO) = C2f-1, p) = c 2yf’f-2, W(0) = 0, 

Jg’ = J ( 0 )  = 0, Jp = c2 f-1- 4, = - c z ld 1 7  

as found by Hunt & Leibovich (1967) who, because they looked for a solution in 
which W(O) = a/& = 0 and the electric field is transverse, did not need to apply the 
Hartmann condition (9b). Note that the O(M-4) core variables in (10) are, as yet, 
not completely determined. 

The equations 
aj$/ay = a”(o)/a<3, ajp/ay = - a326(o)/a<3, (15a) 

aj$lag = av(o)/ay - 4 f f - 2 ,  ajb9lac = - ado)/ay ( 1 5 b )  

of the system (1 1) determine the non-trivial structure of the side-wall layers. 
The associated boundary conditions are 

32 3IJ (15c) ~ C O )  = V(O) = ‘(4) = .t8) = 0 at 5 = 0; 

f ’ d o ) T d 0 )  = 0, f2$Tjh4) = ado)/ag&f’ado)/a[ a t  y = +f(x); (15d) 

utol = c, f-1, ~(0) = c2yf’f-2, j $  = j$) = 0 at 6 = T 00. (15e) 

Once do) and do) have been found (which is the subject of the next section), the 

and 

remaining equation of the set (1 1) yields 

so that W@ = 0 at z = 2 1 and this determines the remaining functions in the 
core solution : 

h(f) = C;x - CL 1” f-’dx, ? p L )  = 0. 
0 

Inessential additive constants have been omitted. The integration constants 
C; and CL are in fact zero, since otherwise the external resistance is changed 
and/or the flux condition (2) is violated, to order M-9, as the following shows. 

For f ’ =i= 0 we shall find, in contrast to the case f ’  = 0 studied by Hunt & 
Stewartson (1965), no flux deficiency in the side-wall layers, i.e. the displacement 
thickness of each layer is zero. Consequently, the correct value is obtained for the 
integral in condition ( Z ) ,  to order M-4, if u is replaced by its core approximation 
Uco) + N-BU(g) = - (C, + M-*C;)/f; hence 

CL = 0 for f ’ +  0. 

The calculation of the current entering or leaving the side walls and of the 
potential difference between them is the same for h(4) as it was for h(O). As a result, 
the first of the relations (13’) must also hoId for C; and C;, so that 

C;= 0 for f‘+ 0. 
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In short, there is no O(M-6) flow in the core and the Hunt-Leibovich solution 
(14 )  is correct to O(M-l), as they supposed. 

4 

o = w = o  

aopg=j--* 

awlag =yf - + 

e =w,  (aeiay - azqap) = - (fy (aw/ay - azw12p) 
kv=f 

azeiay- ~ o / a p = o  a-to 

aZwiay2 - a4wiap = o w - t o  

(u=-f 

so as to satisfy (15 b )  and to have variations 6, w from core values. The resulting 
boundary-value problem for 6’ and w is shown in figure 3. The left-end conditions 
suggest that 6’ is even and w odd in y, and this assumption is compatiible with the 
differential equations and remaining boundary conditions. 

With the introduction Qf sine transforms 

the governing equations become 

a28/ay2- g-48 = ~ F ( Y ;  x ) ,  a2wlay2- g4o = ~ G ( Y ;  x), ( 1 9 a )  
where F and G are the unknown values of a28/a<2 and a2w/aC2 on 5 = 0, these 
functions being even and odd in y respectively. Similarly, the conditions on the 
top and bottom walls become 

0 T G = (528 a8/ay) ( j ’ ) Z ( ( %  f a ~ / a y )  = o at y = +J(x). (19b)  

The solution 8 ,G  of the boundary-value problem ( 1 9 a , b )  will contain the 
functions F and G. By making it satisfy the left-end conditions 

which have so far not been applied, integral equations will result for P and G. 
For this purpose it is convenient to introduce the new variables 

Y = yf-1, z = g-p, and the parameter /3 = (1 -f’2)/(l +f’”. (20) 
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- Then 
B = i ( R ( +  Y)+W(- Y ) ) ,  55 = &(8(+ Y)-W(- Y ) ) ,  

where 

and 
T = + d f ( F + G ) .  

This solution will satisfy the conditions (19c) if r satisfies the integral equation 

1+ Y = j -1 r (Y*;p ) (2n -&/"R(~ ,  0 Y* ,E;p ) 'd=- l~ -  Y * I - + ) ~ Y * .  (22 )  

The entire problem then is to solve this equation for r ,  which gives F and G 
from its even and odd parts in y. Once this has been done, 8, G follow the formulas 

+1 

(21 ) ,  so that on inversion 

8 = +(R( + Y )  + R( - Y ) ) ,  w = &(R( + Y )  -R( - Y ) ) ,  
where 

R = n i l  +'r( Y*; p) (K(  Y ,  Y*, Z; p)  - erf (421 Y - Y* 1-4)) d Y*, 
-1 

The velocities and currents are then given by 

d o )  = c2f-yi - aqaz), d o )  = c,fy-y Y - awlaz), 
j $  = -c2fy-+aW/aY, j $ )  = c,f-~aaelaY, 

w(i) = c, f 'f-*w, + c,plf-*w,, 
where 

w, = amlay  - i e -  gzaslaz- melay, w, = aepp. 
Clearly, this gives the value (17)  anticipated in the last section. 

4. Boundary-layer profiles 
Exceptfor the cases /3 = 0 and 1, which are discussedin the next section, theinte- 

gral equation (22 )  must apparently be solved numerically. But first troublesome 
singularities are eliminated by several simple changes. (i) The term I Y - Y*/-S 
is removed by integration with respect to Y between - 1 and a new variable Y .  
Although the integrated kernel is then finite everywhere, its slope is infinite 
along the diagonal Y = Y*. The Gauss-quadrature approximation is therefore 
improved if the function 
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is subtracted from the integral. (ii) In  evaluating 
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part of K is removed and integrated exactly over the semi-infinite range of E; 
so that the remaining integrand behaves like exp ( - 2E2) for large E and any Y and 
Y*. Gauss-Hermite quadrature can then be used for the portion of the range 
beyond some 8,. Because of the factor 8 - 2 ,  integration by parts is used in the 
range (0, E,) before Gauss quadratureisapplied. (iii) Since r behaveslike (1 - Y*)-t 
near Y* = + 1, the integral is rescaled with 

Y* = 1-2-*(l-P)4 and r = $x24(1- Y*)-i?. 

The resulting kernel is approximated by a matrix of its values at  specific 
( Y , P )  points. The ordinates P have 24 Gauss-quadrature values, while the 
abscissas Y are chosen to give a symmetric array in the Y ,  Y* plane. In  this way 
the diagonal Y = Y* is covered. The set of linear equations (containing the 
Gauss weight factors) which approximates the integral equation (22) is then 
solved for the values of P at the discrete P values. The function ar/ap, which is 
needed for w@, is determined by the same scheme with the function 1 + Y 
replaced by an integral of r .  

These two functions are then integrated numerically to give the velocity and 
current profiles in the boundary layers. With proper scaling (see equations 
(24Qa)) the components do), do), j$, and j$) depend on x only through the 
divergence parameter p(x) .  On the other hand (see equation (24e ) ) )  w(*) must be 
divided into two functions which can be scaled separately into profiIes deter- 
mined by p(x).  

Several typical profiles are given in figure 4. Figure 4 ( a )  shows the variation 
with p of the velocity do) on the line of symmetry y = 0. The crossed points x are 
the results of Hunt & Stewartson (1965) for the constant-area duct, /3 = 1. 
The solution for p = - 1 can be used for a duct with If'l 9 1, as long as the approxi- 
mations made in deriving the integral equation (22) remain valid. The slope 
enters only in the conditions (15d), and these are still a consequence of the 
Hartmann conditions whenever If'l 6 M .  The other plots in figure 4 give profiles 
for the velocities and currents at  the levels Y = 0-25,0.75 of a cross-section where 
the wall slope is two (p = - 0-60). 

In particular, we note the overshoot which occurs in each of the profiles of 
figure 4 (a) with the exception of p = 1. This is connected with the absence of a 
flux deficiency in the side layer; a result which can be proved without reference 
to the side-layer structure. Any solution of equations ( l b , d )  with w = 0 and 
constant potential on z = f 1 will satisfy 

(25) 
1 1 

udz = "1 j,dz and "s 
ay -1 ay -1 

In particular we may set u, v,jz equal to do) ,  e(0),jio) or U@), V0), JLo) and hence 
their difference W), Go), jLo). SincejiO) = 0 we therefore have 
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FIGURE 4. Boundary-layer profiles for parallel side walls, showing ovcrshoots for f ’  + 0. 
(a )  do) = G, f-lU at y = 0 for various values off ’. Crosses show Hunt, & Stewartson’s 

values for a constant-area duct. 
( b )  do) = G, f-‘U and = C ,  f-SJ, 
(c) do) = G,f’Yf-*V and j?’ = 
(d )  w(0’ = C J f  -8 w, + c,p’f-+ w, 



Three-dimensional M H D  duct jlows. Part 2 669 

Now, whatever the structure of the side layers, the normal component of the 
O( 1 )  velocity must vanish at the top and bottom : 

f’G(0) T O(0) = 0 at y = +J(x). 

Integrating this between the side walls z = f 1 then gives 

f ’ 3  T 2 = 0, i.e. T ( x )  = %(x) = 0 when f‘ + 0. 

Thus the O(M-4) flux deficiency is identically zero at  each level y = const. and the 
velocity profiles derived from the solution of the integral equation (22) will have 
this property for all p + 1. When p = 1 there is a flux deficiency, as was noted by 
Hunt & Stewartson (1965), and the paradox will be explained in the next section. 

5. Special divergences: /? = 0, 1 

For p = 0 (f’ = -F. l), the integral equation (22) reduces to 
Exact analysis is possible for two values of the divergence parameter p(x). 

In  terms of the function 
~ ( ( 1 - 4 ~ ) ; 0 )  for 0 < 7 < 

(27 )  
- r ( ( 4 7 - 3 ) ; 0 )  for 6 7 < .. 1, 2’1 d7)  = { 

1: 
this equation becomes 

27-1 = q(~* )1~ -7*1 - *d~* ,  for 0 < 7 < 1, 

which has been solved by Carleman (1922) and others. The solution gives 

r ( Y ; O )  = -2*m-1(1- ~ ) - * ( 3 +  Y ) - ~ ( I +  Y ) .  

The corresponding functions 8, w are defined by substituting this solution into 
equation (23‘),  with K simplified for p = 0. This integral could not be found, so 
explicit expressions for the velocity and current profiles cannot be written. 

term of a 
power series in p. If 

The flow for small p can be obtained by using this solution as the 

m 

i = O  
y (Y ;P)  = c Pir i (Y) ,  

each term Ti( Y )  is governed by the same integral equation (26 )  with the function 
1 + Y replaced by an integral of the previous terms. The solution for any ri can 
finally be written as a single weighted integral of the known function r (  Y ;  0). 
For instance, 

+1 

-1 
r l ( Y )  = 2 - t n 1 ( 1 - ~ ) - 6 ( 3 + ~ ) - 4 /  r ( Y * ; O ) ( l + ~ * ) f ( 5 + ~ * ) t  

x ( ( 4 +  Y*+ Y ) - l - ( 2 +  Y*-  Y)-l)dY*. 

The first two terms provide a check on the numerical solution for r and ar/ap 
when /3 = 0. 
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The solution for p = 1 describes the fully developed flow in a constant-area 
duct and should agree with the previous results for this special case. Then 
f (x) = f (0) so that do) and j!$ are zero, and w is an irrelevant odd function of y. 
The flow is therefore governed by the even part of the integral equation (22 ) ,  

which has the solution 

This is the result given by Chiang & Lundgren (1967) in the appendix of their 
paper. Both they and Hunt & Stewartson (1965) use an alternative approach to 
the problem, which, in terms of the present analysis, is equivalent to using cosine 
transforms. Then left-end conditions 8 = w = 0 give integral equations on the 
unknown values of a38/ac3 and a3w/ac3 on 5 = 0. Of course the two approaches 
give completely equivalent solutions to the governing equations. 

However, they find a flux deficiency in the boundary layer which is absent 
from our solution for every value of P + 1. The apparent contradiction is best 
demonstrated by splitting the velocity down the duct into three parts and 
considering the behaviour of each as p-+ 1. From equation (23) we have 

u(0) = c2 f-'(ul + u2 + u3), 
where 

The sum u2 + u3 gives the contribution due to K .  The extra term ( 1  - ,8 + 2E2)-l in 
U3 ensures that the integral is finite for all p; otherwise it behaves like ( 1  -p)-J as 
/3-+ 1. In addition it is chosen to give 

for each Y and every p, and to yield a simple compensating function u2. We find 

+I m +1 

0 -1 0 -1 
Smu2dZ = -n*[ r (Y*;P)dY*  and (u , -1)dZ = nIf r ( Y * ; B ) d Y *  

for each Y and every p. 
In  the limit p+ 1 the velocity profile is given by u1 alone, the contributions 

from u2 and u3 being zero. Nevertheless, however close P is to 1,  u2 provides a 
non-zero total flux which exactly cancels the flux deficiency due to ul. 
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The function u2 also shows the nature of the transition from our result to that 
of Hunt & Stewartson. As /?+ 1 it becomes uniformly small over the whole range 
of 2, but it ceases to be exponentially small in the core for (1 - p) = O(M-1)) when 
it induces an O(M-3) perturbation there. We may visualize the overshoot for 
f ’  M d a s  moving steadily towards the edge of the side layer until forf’ = O(M-4) 
it penetrates the core. 

It is now clear that the fully developed solution of Hunt & Stewartson is not 
typical of flow in a rectangular duct. When the duct is converging or diverging the 
side-wall layers have no flux deficits and there is no O(M-4) disturbance of the 
core flow. Only near a throat wheref’ becomes comparable to M-&, is fluid forced 
out of the side-wall layers into the centre of the duct. It would be interesting to 
determine the flow in the transition region where f ’  changes from being com- 
parable to M-4 to being large compared to it. 

6. Diverging side walls 
The success of the preceding analysis is due to the fact that the core solution, 

given by i = 0 in (10) automatically satisfies the electromagnetic part of the side 
boundary conditions (36). The side layers do not have to accommodate a jump in 
the tangential current. When the side walls diverge, however, Jko) has a component 
parallel to a side wall, and this must be reduced to zero across the layer. The 
resulting O(M4) gradients in current imply, according to equation (4 b) ,  velocities 
of the same order. The total flux through the duct is now distributed between the 
core flow and the O(M4) flows in the side layers. 

To allow for such velocities in the side layers the expansion ( 6 )  is replaced by 

u = u(-S)M* + do) + O( M-)). 

In  the core, the O(M4) variables are all zero and the O(1) are given by (10) with 
i = 0; the integration functions h(O)(x) and -@O)(x) have to be determined by 
matching with the layers on the side walls, now taken to be 

z = &g(x)  with g(0) = 1. 

Note that the characteristic length d is henceforth the half-width at x = 0 and the 
condition (2) still holds. 

By symmetry we need only consider the layer at  z = - g(x). It is convenient to 
introduce, at  the x station considered, the local Cartesian co-ordinates 2, y, z” 
shown in figure 5.  The J direction is parallel to the wall while the z”is perpendicular 
to it, so that now 5 = M+Z. The components of velocity and current are referred 
to this local system; for example, i3-4) is the O(M1) horizontal velocity parallel 
to the wall. When tildes are applied appropriately and the superscripts 3, 0 
changed to 0, - 4, we find that the governing equations ( 1 5 ~ )  b )  and the side- 
wall conditions ( 1 5 4  still hold, while the Hartmann conditions ( E d )  become 

where a = (1 + g‘2)-4. 
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But it is the boundary conditions as <+m, which come from matching with the 
core solution, that change the layer problem. 

The first obvious results are 

c(-$) = j(-# = 0 and j y )  = -a dh(0)ldx. (29) 

FIGURE 5. y section showing local co-ordinates Z, Z for each side wall. 

and the core velocity normal to the wall, 

must equal it. A similar result, with g changed to -9 ,  arises from the other side 
layer, so that the integration functions in the core solution are now determined: 

Inessential additive constants have been omitked. As before, the integration 
constants C, and C, are related to the pressure drop Nh, along the duct and the 
potentials T q5, of the side walls x = ? g :  
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They are determined by the flux condition (2) and the external electric circuit. 
When account is taken of the change in potential across the side layers and of the 
flux down them, we find 

c, = c,9( /;g-ldx) (1 +9J-;fg-Vx)-l' c, = f(O),  (31') 

for side walls connected by a resistance 9/d. In  particular we note that the 
O(1) core flow, given by equations (10) with i = 0, reduces to the previous one, 
given by equations (la), when g = 1. 

The O( 1) core solution (10) is no longer of the HuntrLeibovich type; in parti- 
cular there is now a transverse velocity. Moreover, for g' $: 0, d2h(O)/dz2 no longer 
has a factor f', so that the solution becomes singular as f ' + O  and does not 
reduce to that for f '  3 0 [cf. the remark after equation (lo')]. This is not sur- 
prising, since the latter has a quite different form, as we shall see in the next 
section. 

There remains the boundary-value problem mentioned above, for which it is 
convenient to write 

Once more figure 3 shows the problem for 0 and w ,  except that f' must be replaced 
by a .  and the conditions at  5 = 0 by 

8 = 1, w = g/f, aepg = awjag = 0. 

The analysis parallels that of $3, except that cosine transforms are used instead 
of sine to take account of the changed boundary conditions at  g = 0. In brief, we 
find 

where 
e = *(R(+ Y)+R(- y)), W = 4 ( ~ ( +  Y)-R(- Y ) ) ,  

R = ?rtj+lr(Y*;P)L(Y, Y*,.z;p)aY* 

[exp(-EZlY- Y* l ) -E(Y,  Y*,6 ;p) ]cos(zE)d~/~2 ,  

-1 
and 

L = 277-1 1: 
if being defined by (21'). These should be compared with the formulas (23); in 
particular 

Note that Y and 2 are the scaled co-ordinates (20) and (23") used previously, but 
that p is now generalized to 

aL1a.z = K-erf(+ZI Y -  Y*I-*). 

p = (1 - a2f'2)/( 1 + a y ) .  
43 F L M  46 
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The function r which appears in these results is 
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r = & d f $ ( F + G ) ,  

where F and G are now the unknown values of a38/ac3 and a3w/aC3 on 5 = 0. It is to 
be determined from the integral equation 

which may be compared with the previous equation ( 2 2 ) .  
Once 8 and w have been found the velocities and currents are given by 

where 

Clearly this gives the value (30) anticipated earlier. 
The numerical determination of r and &lap (which is needed for W,) and the 

integration of these functions to  obtain the velocity and current profiles follows 
closely the work described in 3 4. As there, the profiles are described by functions 
depending on x only through p. This time, however, G(O) requires three such 
functions instead of two. Several typical profiles are given in figure 6. It is 
noteworthy that when p is negative there is a reversal in the C(-*) profile near the 
centreline y = 0. 

It is of particular interest to determine how much of the total flux through the 
duct is carried in the core. By integrating 43-4) through the side layer or U(0' 

across the core, we find the fraction 

f9jZ 9-ldx 

f s  1 +9J2 0 fg-ldx' 
(32) 

fs' 0 &,(x) = 1 + y  (1 -A), A(x;9) = 

A detailed discussion of this result will be given in 8 8; but it is immediately clear 
from the case of short-circuited side walls (9 = 0) that there may actually be 
backflow in the core (Q, < 0) or in the side layers (&, > 1). 

One physical explanation is that sufficiently large values of g' create large 
potential jumps across the side layers. Since the potential between the side walls 
is zero, a strong field E, is created which can drive the core flow backwards ! 
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For the special case ,!3 = 0 the integral equation can be solved exactly. Thus 

+1 
1+Y = 2 1  -1 r(Y*;O)[(2+Y+Y*)+-IY-y*IB]dy* 

and the same transformation (27) reduces this to a standard form from which we 
find 

r(Y;O) = 2-9,-1(1- Y ) 4 ( 3 +  Y)-2(1+ Y ) .  

The result provides a useful check on the numerical solution for /3 = 0. 
In general, the solution becomes singular for every non-zero 9‘ as f ’ + O  

(i.e. p-+ l), as can be seen from the flux formula (32). We shall return to this 
question in $7,  where, in particular, implications for a duct with f ’  E 0 will be 
discussed. 

7. The exceptional casef E 0 
To complete our discussion of flow in variable-area rectangular ducts with 

conducting side walls we consider the case in which the other walls are plane and 
parallel, i.e. f ’  = 0. Part 1 pointed out that the two Hartmann conditions ( 9 b )  are 
then effective1y:a single condition, and that further examination of theHartmann- 
layer condition ( 8 b ) ,  to order M-l,  is needed to resolve the indeterminacy. Their 
argument applied whatever the shape and nature of the side walls and leads to 
the core solution 

Here hco), the pressure divided by N ,  and 
functions of x, x and expansions of the type (6) are involved. 

at the side walls in our problem if 

the electric potential, are harmonic 

Such a core solution will have zero tangential current and zero normal velocity 

In addition 

when the duct is joined at  its ends to ducts of the types discussed previously. 
Here E,, E, are the values of - (f’)-l cl(fdh(O)/dx)/dx coming from the adjacent 
ducts, and we have ensured continuity of pressure and electric potential across 
the joins. For the duct with parallel side walls these values are - $ , / g ( O )  and 
- $,/g(Z). Now qS0) and h(O) are determined. The constants $, and h, (there is no 
analogue of the previous C, and C,) can be calculated from the flux condition ( 2 )  
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and the external resistance. Assuming that no account need be taken of the side 
layers, we find 

h, = 2 / ( C + 2 9 f ( O ) )  and 4, = 29f(O) / (C+2Bf(O))  

where C is the capacitance of the x, z region under the given boundary conditions 
on h(O). 

Such a core solution can be matched with side layers, which are of the type 
discussed in Q2-5.  Moreover core solutions which do not satisfy the conditions 
(33) cannot be matched: a non-zero tangential current requires a layer of the 
type considered in 8 6 and we saw that there is no such layer when f’ = 0; while 
zero normal velocity is required automatically by the layer. 

In  fact the side layers are of particularly simple form. In  equations (18)) with 
tildes added, we have do) = j!$ = 0 and C, f-l replaced by - 8h@)/82- 8$(0)/8a. 
Clearly p = 1 and the layer is that found by Hunt & Stewartson (1 965) for fully 
developed flow, which corresponds to g’ = 0 here. It is the tangential core 
velocity which drives the layer; in fully developed flow this happens to be the 
axial velocity over the whole core section. 

Part 1 pointed ou% that x, z lines of constant vertical separation of the duct walls 
play a special role in the core solution. Whenf’ = 0 all lines have this property, 
and the added flexibility of the core flow allows it t o  adapt to the side walls. 
For f’  + 0 no adaptation was necessary when g‘ 5 0, but for the general duct of 
$ 6  the lack of flexibility resulted in extreme side layers. 

Note that a station where g’ = 0 plays no special role. In  fact the duct may have 
a whole portion where g‘ vanishes. 

8. Generalizations and generalities 
Three types of symmetric ducts have been considered, namely, 

(a)  g‘ = 0, ( b )  f ’ , g ’  zk 0, 

Throughout we have assumed that f does not change abruptly. When it does, a 
free shear layer extends across the duct at  that section, signalled by an abrupt 
change in the core solution with x [see equations (10) with the definitions (13) 
and (31)]. However, the core current [even though O(l)] does not jump, so that 
the structure of such layers can be that found in part 1 on the inertialess approxi- 
mation. Similar remarks apply to g‘ except for ducts of type (c): the potential 
core solution is infinitely smooth whatever its boundary conditions. With the 
addition of such free shear layers the theory is complete except, as noted earlier, 
near stations wheref’ = 0. 

A general symmetric rectangular duct of variable area (with perfectly con- 
ducting side walls and insulating top and bottom) will be sectionally of one of the 
three types above. The appropriate part of our analysis still applies in each 
section, but the constants C, and C, (or ho and 4,) are now determined by the flux 
condition and an overall external-circuit condition together with continuity con- 
ditions on h at each join. However, free shear layers will occur at  each join even 
iff’ and g’ change continuously. This may be seen from the different character 

(c )  f = 0. 
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of the side layers in the three cases: for type (a )  there is no flux deficiency; for 
( b )  part of the O( 1) flux is carried by the layers; and for (c) there is a flux deficiency. 
It is clear that there must be a free shear layer at every join to exchange fluid 
between the side layers and the core. (In fact it must be a particularly severe 
layer when ( b )  is involved since an O( 1) amount must be exchanged.) 

The free layer at  a join between (a)  and ( b )  can be the inertialess kind described 
in part 1 ,  since the core current does not jump. (Remember that the constants C, 
and C, are half the potential difference across the duct and a quarter of the flux 
down it.) But this is not true of the other two joins. In fact a join between ( b )  
and ( c )  requires f’ to vanish, which involves the infinities mentioned in §6. 
Similar remarks apply when a section of the duct is of constant area, i.e. 

since this may be considered a special case of (c). 
Free shear layers with a current jump deserve to be studied, but their analysis 

will be difficult for the reasons given in part 1 .  However, our present purpose is to 
find the overall flow, which requires no knowledge of these layers but merely faith 
in their existence. Here we have a contrast with the three-dimensional obstacle 
in a parallel-sided channel considered in part 1. While the precise structure of the 
layer was not required to determine the flow, certain gross properties of it were. 
Incidentally, the structure problem for such an obstacle placed in one of the 
present ducts is again difficult, since there is in general an O(1) transverse 
current even when the side walls are on open circuit. The analysis in part 1 as- 
sumed the current-free state obtained in a duct of type ( c )  on open circuit. (Note 
that the free shear layers mentioned all stem from geometrical discontinuities, 
not electrical, as for example, found in Alty’s (1966) experiments.) 

We shall now summarize the main features of flow through the three types of 
ducts. In type (a)  the two-dimensional solution of Hunt & Leibovich (1967) is 
valid everywhere except near the side walls, where matching layers are needed. 
The external circuit plays a very small role: a change in its resistance adjusts the 
mean pressure gradient, and hence transverse current, over the duct but does not 
affect the flow field. Deviations from the mean are determined at each cross- 
section by the height of the duct. An excess current across the duct at one section 
returns across sections where there is a deficiency, via the side walls. 

The two profiles of the transverse velocity w@ illustrate the behaviour of the 
side layers. The ‘slope ’ component W, gives a velocity away from the wall in a 
diverging duct. For an expansion between straight walls, its amplitude de- 
creases like f-* while its scale increases like f 4: the fluid migrates away from the 
wall and gradients in the layer are eased. The ‘curvature’ component W, gives a 
velocity towards the wall when the convergence or divergence is increasing and 
away from the wall when there is decrease, even though in either case the layer is 
thinning or thickening respectively. 

The core solution for type (b),  is, of course, not two-dimensional, though the 
x and y velocities are still functions of x alone, as is the single, transverse 
component of current. Also the scale of the side layers is still f i, but the transverse 
velocity 6(0) is too complicated to draw worthwhile general conclusions. Instead 
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the flow may be characterized by the proportion of the total flux carried by the 
core; i.e. the QC(z) of equation (32). 

When there is no external load (9 = 0) we have 

Q, = 1 + (fg’lf’d; 
there is an excess flux in the core for g’lf’ > 0, i.e. a doubly converging or diverging 
duct (unimodal), and a deficient one for g’/f’ < 0, i.e. a converging-diverging duct 
(bimodal). I n  the first case there is an equal backward flux in the side layers and 
in the second case an equal forward flux. The core flow is actually reversed when 
g’ff’ < - gff, i.e. when the relative change of the side walls is greater than that of 
the others in a bimodal duct. 

An external load produces opposing volume fluxes. The core flux is increased in 
a bimodal duct and decreased in a unimodal one, by an amount which increases 
monotonically with @. On open circuit (9 = co) we have 

f9‘ f (.)pa7(5) 0 

jof’f;) dE/s(E) a 

&,= l+-(1-A) with h(x;co)= f ’Y 

Clearly h will be greater than 1 in parts of the duct and less than 1 elsewhere: in 
the former, an excess flux will be changed to a deficient and vice versa; in the 
latter, an excess or deficient flux will be reduced but not reversed. 

As a simple example we consider exponential walls 

f = A e-Wl, g = e - b d  

for which 

where 
Q, = (1 + @/a) (1 - ke-uz’z)) (1 + O(&-9, MN- l ) ) ,  

k = rE(b)/[l + rE(b - a)] ,  E(a) = [ea - 111. and r = 9AZ. 

(Because the flux in the boundarylayer is O( l), the hjgher-order terms are caused 
by higher-order magnetic-viscous effects in the core and boundary layers or by 
inertial effects which we have ignored throughout.) The parameters a and b repre- 
sent the convergence of the y and z walls of the duct, while r is the resistance 
parameter. Note that E(a)  is positive for all a. For all values of u( p 0) and b, 
the constant k is finite and increases monotonically with r, in agreement with the 
general case above. The two extremes are 

r = 0 :  k = O ,  

r =a: k = E(b)/E(b-a) > 0. 

When the side walls are shorted the core flux is constant along the duct, with 
an excess for a unimodal duct; (bla > 0) and a deficiency for a bimodal (b/a < 0) 
in accordance with the general theory. When the side walls are on open circuit 
these results are reversed over the part 

(344 
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and the part 
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o < x < ~F)z for a > 0, (34b) 

since k lies between 1 and ea for all a. These are the parts of the duct referred to in 
the general discussion above. 

The progress of the change from excess to deficiency, or vice versa, as the 
resistance increases can be readily seen in two special cases of our example. We 
have 

r 
l + r  

k = -E(a) when a = b ,  

k 
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FIGURE 7. Proportion of flux through core for exponential divergences: k versus a. 
(a) Unimodal duct a = b. ( b )  Bimodal duct a = - b. 
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and figure 7 (a) gives graphs of k versus a for various values of r as well as the curve 

I --------- L; _-----------_ 

-x=o .Y =x, A I ; +x=x* x=1- 

+ x I\ +=A z=+g+ Cd 

V Z  I ~ - - - - - - - ~ l  I 
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I ' __--- 
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I I  
I I  

C+ I I  
I I  
I I  

I I  

I I  
I I  
1 1  
I I  
I I  

--------- I L  -_-----------.  

e' for a < 0, 

1 for a > 0. 
k = {  (35) 

For points below this curve there is no reversal. So for any given a there is a 
minimum r which will change the core flux; and as r increases from its minimum 
the region of the duct affected (34a or b)  spreads from the exit or entrance. As 
la1 increases from zero to infinity, the minimum decreases from infinity to zero. 

In  the second case we have 

rE( -a) 
1 +rE( - 2a) 

k =  when a = -b 

and figure 7 (b)  gives the new graphs of k versus a for various values of r as well as 
the curve (35). Again there is a minimum r for each a and the affected region 
spreads as before. The minimum still increases from zero to infinity as a increases 
from - m to 0, but now as a increases from 0 to m it passes from infinity to its own 
minimum (4.910 for a = 1.256) and back to infinity again. When the y walls are 
converging (and the z walls diverging) in such a bimodal duct, there is a minimum 
r = 4.910 below which there can never be a reversal of the core-flux deficiency 
which prevails for short-circuited side walls. 

There is little to say about ducts of type (c), since the side layers have been 
described in detail by Hunt & Stewartson. However, two remarks can be made 
about the core flow, and indeed in essence could have been made by them. p n  
their case h = - hox/l, y5 = - y50z and C = 211.1 When the duct is shorted (9 = 0) ,  
the pressure difference 2N/C drives the fluid with unit velocity, thereby in- 
ducing a unit transverse current which moves freely through the external circuit. 
When the duct is on open circuit (9 = m), a potential difference of 2 has built up 
across the duct to cancel the induced electric field of the fluid moving down the 
duct with unit velocity, and there is no pressure drop (to O ( N ) ) .  [Similar but more 
complicated remarks can be made about ducts of types (a) and (b).] 
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The analysis is easily extended to non-symmetric ducts. The possibilities then 
multiply to the point where it does not seem worth while to catalogue them. 
Instead we shall illusti-ate their ad hoc treatment with the example of a per- 
fectly conducting cylinder 

2 = &S*(X), 0 < x1 < x ,< x, < 1 

placed in the duct of figure 1. The various flow regions are indicated in figure 8. 
Upstream and downstream of the cylinder, the duct is of type (a),  so that, in 

the core region Cu, h(O) is given by equation (13) with 

where T q50 are the potentials of the walls z = 2 1. Similarly in Cd 

h(o) = h y X t )  + cf(x - Xt) - cgjz p a x ,  
xt 

where c: = 9 0 ,  Q: =f(O)  

and h(O)(x,) will be determined later. In  the core regions C* the arguments leading 
to the results (31) show that 

where h(0)(xl) is the value obtained in Cu. If g5c is the potential of the cylinder and 
Qk are the total fluxes between it and x = 5 1, 

CF = 4~)~ _+ &5e, C$ = $Q*. 

[The corresponding formulas for $(O) will not be needed.] Since 

Q++Q- = 4f(O) 

there are just three constants (&,, $c and Q+ say) to be determined. 
One condition for these constants is that the change in pressure (i.e. h) should 

be the same above and below the cylinder: the values of h at x = xt calculated from 
the two formulas (37) are to be set equal. After the constants have been deter- 
mined this common value is to be used in the formula (36). The remaining two 
conditions come from the external circuit, which quite generally may be con- 
sidered as the connection of the two walls and the cylinder to each other in pairs 
through three resistances. The total currents entering the two walls and the 
cylinder (i.e. the nodes of the external circuit) can be calculated in terms of the 
three constants from the h(O) formulas above. [Three conditions are then obtained 
but one more unknown, the loop current, is introduced.] 

Instead of writing down these conditions in general we take the special case of 
shorted walls and cylinder (all resistances zero). Then 

Limitations of the inertialess approximation. We have assumed that the applied 
magnetic field is sufficiently strong for inertial effects to be negligible. The 
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accuracy of this inertialess approximation in any physical situation depends on 
the relative sizes of N and M .  Eventually inertia must be taken into account, and 
the expansion solution must include terms which involve both Nand M.  The curl 
of equation (4a),  together with equations (4b ,  d),  yields an equation involving 
only the velocity, 

a2v/ay2-M-'V4~ = N-'V(V. [(v.V)V]) - N - ' V 2 [ ( ~ . V ) ~ ] .  

For ducts of types (a)  and (c), where one pair of walls is parallel, the appropriate 
inertialess expansion (6) is a power series in N-4 beginning with an O(1) term, 
while, for ducts of type (b )  where both pairs of walls diverge, the first term in the 
expansion is O(M4). In both expansions, the first term involving Nis  created by 
the inertial error of the leading inertialess term in the side-wall boundary layers, 
but it has a, different magnitude for the two expansions. 

In  ducts of types (a) and (c), the largest inertial error involves terms such as 

N - ' a 2 ( ~ a ~ / a ~ ) / a ~ z  = N N - l  a ' ( ~ ( ~ ) a d ~ ) / a ~ ) / a g z  

in the side layers. The first inertial term in the expansion (6) is O(NN-') and is 
negligible compared to our inertialess solution do), if 

MiV-1<l-+N%R or M % R .  

In  ducts of type (b) ,  the corresponding inertial error in the side layers is 

N-'P(.ii a.ii/aif)/aZ' = M ' ~ - ' a Z ( ~ ( - 4 ) a ~ ( - ~ ) / a ~ ) / a ~ ' .  

The resulting O(M2N-l) inertia term in the second type of expansion is negligible 
compared to Mh4-4) if 

M2N-1 .g MB+N % R3 or M4 9 R. 

This is the same restriction required for the theory of part 1, which dealt with 
free shear layers involving O(M*) velocities. The appropriate criterion for the 
inertialess approximation in each type of duct should be added to the general 
assumptions (5). 
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